
Abstract
In high-dimensional single-cell analysis, several computational methods have been devel-
oped to map the cellular state space, but little has been done to map the gene space. A 
mapping that preserves gene-gene relationships within the dataset is particularly useful for 
characterizing cellular heterogeneity within cell types, where boundaries between cell sub-
populations are often unclear or even arbitrary.

Here, we present gene signal pattern analysis, a new paradigm for analyzing single cells. 
We build a cell-cell graph and design a dictionary of diffusion wavelets, capturing a multi-
scale view of the cell space. We then transform genes by the dictionary and learn a re-
duced gene representation. Given the gap in prior research for this problem, we design 
nine alternative strategies and three benchmarks for evaluating preservation of gene-gene 
relationships, all of which are outperformed by diffusion wavelet-transformed signals. We 
also define, calculate, and evaluate localization, a key property of a gene signal on the cel-
lular graph.

We demonstrate the utility of gene signal pattern analysis (GSPA) on T cells from a mouse 
model of peripheral tolerance in skin1. GSPA reveals a continuum of gene signals character-
ized by T cell subtypes and transcriptional programs related to effector function and prolifer-
ation. In the same model, GSPA captures the key groups of ligand-receptor pairs with 
shared patterns, including PD-L1/PD-1 communication between a subset of myeloid and T 
cells. Finally, we built a multiscale manifold of 48 melanoma patient samples, demonstrat-
ing the ability of our method to characterize differences between responders and non-re-
sponders to checkpoint immunotherapy2. Together, we show gene signal pattern analysis, 
through methodology from graph signal processing, spectral graph theory, and machine 
learning, represents an avenue for future research in scRNA-seq analysis.
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