Mapping the Gene Space with Gene Signal Pattern Analysis
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Abstract Overview of Gene Signal Pattern Analysis (GSPA)
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populations are often unclear or even arbitrary. — LSRN °,

Here, we present gene signal pattern analysis, a new paradigm for analyzing single cells. — ® o ® o
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We demonstrate the utility of gene signal pattern analysis (GSPA) on T cells from a mouse 8 A C A localization Cell-cell communication with atient maniiolds
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model of peripheral tolerance in skin'. GSPA reveals a continuum of gene signals character-
ized by T cell subtypes and transcriptional programs related to effector function and prolifer-
ation. In the same model, GSPA captures the key groups of ligand-receptor pairs with
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shared patterns, including PD-L1/PD-1 communication between a subset of myeloid and T Gene Dim 1
cells. Finally, we built a multiscale manifold of 48 melanoma patient samples, demonstrat- cone
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