

Manifold-based gene density estimates reveal immune signaling in meningioma

<u>Aarthi Venkat¹</u>, Danielle Miyagishima^{2,3}, Alexander Tong⁴, Murat Günel^{1,2,3}, Smita Krishnaswamy^{1,3,4}

¹Computational Biology and Bioinformatics Program, Yale University ²Department of Neurosurgery, Yale School of Medicine ³Department of Genetics, Yale School of Medicine ⁴Department of Computer Science, Yale University

Algorithm details

1. A cell similarity graph is built over data, where each node is a cell and graph edges connect cells with similar gene expression values.

2. Gene expression x for each cell is used to create the gene x expression probability distribution signal.

3. Each signal is then smoothed over the graph using a gen-

eralized form of kernel density estimation to manifolds¹.

4. EMD (Earth Mover's Distance) is computed between each gene density distribution and the uniform distribution.

5. Genes with the highest EMD to the uniform distribution are considered least uniformly expressed, or most differentailly localized along the manifold.

6. DiffusionEMD² between genes that are localized to same regions of the manifold is low, enabling gene set analysis and cell state labeling independent of clustering or trajectory inference.

7. Smoothed density estimates enable improved visualization and generalized biological discovery.

DiffusionEMD between CXCL10 distribution and all genes' over scRNA graph vs. spatial graph identifies SLChigh cells as closer to the immune population in spatial

Method identifies immune signature in NF2-mut grade 1 meningioma tumor, corroborating link between NF2 loss and

Density estimates recover and smooth immune signal in spatial data visualization.

This discovers these two cell states as putative communicating populations in a cluster-independent fashion.

는 PHATE1

1. MELD: Burkhardt, D.B., Stanley, J.S., Tong, A. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat Biotechnol (2021). https://doi.org/10.1038/s41587-020-00803-5

2. DiffusionEMD: Tong, A. et al. Diffusion Earth Mover's Distance and Distribution Embeddings. https://arxiv.org/abs/2102.12833

3. PHATE: Moon, K. R. et al. Visualizing Transitions and Structure for Biological Data Exploration. bioRxiv 120378 (2018). doi:10.1101/120378

