Directed Scattering for learning Euclidean & Hyperbolic Gene Embeddings

Aarthi Venkat^{1*}, Ferran Cardoso Rodriguez^{2*}, Joyce A. Chew³, Michael Perlmutter³, Christopher J. Tape², Smita Krishnaswamy¹

1 Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA.

2 Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, UK.

3 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA

Gene representation is nontrivial

Gene signaling networks are hard to represent from data alone

 Metrics of coexpression are noisy and do not capture real interactions

Yale 🌹

Gene representation is nontrivial

For representing prior gene signaling graphs, classical approaches don't account for directionality

Chen, C., Zhang, D., Hazbun, T.R. et al. Inferring Gene Regulatory Networks from a Population of Yeast Segregants. 2019

Magnetic Laplacian extends GSP to directed graphs

(a) Graph using the expert knowledge positions.

(b) First magnetic eigenmap ($\operatorname{Re} \phi_0^{(g)}$ vs. $\operatorname{Im} \phi_0^{(g)}$).

Visualization

Denoising

Fanuel et al. "Magnetic Eigenmaps for the visualization of directed networks" 2017. Furutani et al. "Graph Signal Processing for Directed Graphs based on Hermitian Laplacian" 2020.

Magnetic Laplacian extends GSP to directed graphs

1. $A^{(s)} = \frac{1}{2}(A + A^T)$ Symmetrized adjacency matrix2. $D_{j,j}^{(S)} = \sum_k A_{j,k}^{(S)}$ Degree matrix of $A^{(s)}$ 3. $\Theta^{(q)} = 2\pi q \ (A - A^T), q \ge 0$ Phase matrix captures direction4. $H^{(q)} = A^{(s)} \odot \exp(i \ \Theta^{(q)})$ Complex Hermitian adjacency matrix5. $L_N^{(q)} = I - (D^{(s)})^{-1/2} H^{(q)} \ (D^{(s)})^{-1/2}$ Normalized magnetic Laplacian

 $L_N^{(q)}$ is positive semidefinite and admits an orthonormal basis of eigenvectors u_i with eigenvalues λ_i

Furutani et al. "Graph Signal Processing for Directed Graphs based on Hermitian Laplacian" 2020.

Geometric scattering for representation learning

Castro et al. "Uncovering the Folding Landscape of RNA Secondary Structure with Deep Graph Embeddings" 2020.

Directed Scattering for Gene Embeddings

Assembly of directed gene-gene graph

OmniPath database

103,396 directed interactions 12,469 genes

Krackhardt hierarchy score = 0.757

Intercellular (signaling) vs Intracellular (gene regulation)

Turei et al. "Integrated intra- and intercellular signaling knowledge for multicellular omics analysis" 2021.

Directed Scattering Transform

Geometric Scattering for Graph Data Analysis

Feng Gao¹² Guy Wolf^{*3} Matthew Hirn^{*14}

Diffusion Operator

.21	.21	00	· ?	12	12	0
.33	3 .3⊉3	0 ₀	Ø	Ø	1 333	0
0 0	0 0	.45	.≩5	1 25	Ø	1.25
.25	00	.45	. ≩ 5	1 25	Ø	00
.25	Ø 0	.45	. ≩ 5	₽ 25	Ø	0
.25	.2∱	00	Q	Ø	125	1.25
00	0 0	. 3 33	ଡ଼	Ø	1 ³³³	1.33

 $P = D^{-1}A$

Coifman & Lafon "Diffusion maps" 2006.

Diffusion Wavelets: Difference between scales of diffusion

Definition [Maggioni] A diffusion wavelet transform is a difference between two scales of lazy diffusion on a graph

$$\Psi_j = P^{2^j} - P^{2^{j-1}}$$

Geometric scattering transform

Definition [Gao et al.] A geometric scattering transform S is an alternating cascade of wavelet coefficients and non-linear aggregations of a signal defined on the nodes of a graph

$$oldsymbol{U}_p oldsymbol{x}\coloneqq oldsymbol{\Psi}_{j_m} |oldsymbol{\Psi}_{j_m-1}\dots|oldsymbol{\Psi}_{j_2}|oldsymbol{\Psi}_{j_1}oldsymbol{x}||\dots|, \qquad oldsymbol{S}_{p,q}oldsymbol{x}\coloneqq \sum_{i=1}^n |oldsymbol{U}_poldsymbol{x}[v_i]|^q$$

Generalized wavelets and scattering

Definition Given a laplace beltrami operator. $-\Delta$, with eigenvalues $0 = \lambda_0 \le \lambda_1 \le \lambda_2$... and associated Eigenfunctions $-\Delta \varphi_k = \lambda_k \ \varphi_k$, the heat semigroup H_t is an operator that satisfies the heat equation.

 $H^t f = \sum_{k>0} g(\lambda_k)^t f(k) \varphi_k$ where $g(\lambda) = e^{-\lambda}$

Geometric Scattering on Measure Spaces

Joyce Chew Matthew Hirn Smita Krishnaswamy Deanna Needell Michael Perlmutter Holly Steach Siddharth Viswanath Hau-Tieng Wu

October 17, 2022

Definition [Chew et al.] A generalized wavelet transform is a difference between two scales of a heat semigroup

$$\Psi_j = H^{2^{j-1}} - H^{2^{j-1}}$$

... scattering follows

Directed wavelets from a Magnetic Laplacian

 $L_N^{(q)}$ has eigenvalues λ_k and eigenvectors u_k for $0 \le k \le N-1$

$$H_k = \sum_{k=0}^{N-1} e^{t\lambda_k u_k u_k^*} \quad H_k = \sum_{k=0}^{N-1} e^{t\lambda_k u_k u_k^*}$$

Directed wavelets are based on the heat kernel which is a matrix exponential of the magnetic Laplacian

$$\begin{split} W_0 &= I - H_1 \\ W_j &= H_{2^{j-1}} - H_{2^j}, 1 \leq j \leq J \end{split}$$

 $\mathfrak{W}_j = \{W_j\}, 0 \le j \le J \cup H_J$

Wavelets are differences between two scales of heat diffusion

The wavelet library consists of dyadic wavelet scales

Learning low-dimensional encoding

DSGE-Euc: Euclidean encoder and decoder DSGE-Hyp: Hyperbolic encoder and decoder

Hyperbolic geometry for tree-like graphs

(b) Embedding of a tree in \mathcal{B}^2

Nickel and Kiela "Poincaré Embeddings for Learning Hierarchical Representations" 2017.

Hyperbolic operations for deep learning

Möbius addition. The *Möbius addition* of x and y in \mathbb{D}_c^n is defined as

$$x \oplus_{c} y := \frac{(1 + 2c\langle x, y \rangle + c \|y\|^{2})x + (1 - c\|x\|^{2})y}{1 + 2c\langle x, y \rangle + c^{2}\|x\|^{2}\|y\|^{2}}.$$
(6)

Möbius scalar multiplication. For c > 0, the *Möbius scalar multiplication* of $x \in \mathbb{D}_c^n \setminus \{0\}$ by $r \in \mathbb{R}$ is defined as

$$r \otimes_{c} x := (1/\sqrt{c}) \tanh(r \tanh^{-1}(\sqrt{c}||x||)) \frac{x}{||x||},$$
(7)

Link prediction AUROC from OmniPath graph

	Method	Directed LP
	node2vec	0.537
Shallow	\mathbf{PM}	0.525
	PM-D	0.546
	GAE	0.602
Undirected	HGCN	0.573
GNN	GAE-D	0.602
	HGCN-D	0.599
KCE	TransE	0.656
NGE	TransE-edge	0.645
Scattering	UDS-AE	0.581
Directed GNN	MagNet	0.714
Ours	DSGE-Euc	0.718
Ours	DSGE-Hyp	0.716

Drug-gene association prediction for Vitamin K3

Edges from DrugBank, ChEMBL, DrugCentral, and BindingDB

	Method	Precision@100	Recall@100
	node2vec	0.18	0.225
Shallow	\mathbf{PM}	0.06	0.075
	PM-D	0.12	0.150
	GAE	0.20	0.250
Undirected	HGCN	0.12	0.150
GNN	GAE-D	0.20	0.250
	HGCN-D	0.16	0.200
KCE	TransE	0.12	0.150
NGE	TransE-edge	0.11	0.138
Scattering	UDS-AE	0.18	0.225
Directed GNN	MagNet	0.14	0.175
Ours	DSGE-Euc	0.21	0.263
Ours	DSGE-Hyp	0.20	0.250

Himmelstein et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing" 2017.

Disease-gene association prediction for Autistic Disorder

Edges from GWAS, DISEASES, DisGeNET, and DOAF

	Method	Precision@100	Recall@100
	node2vec	0.05	0.185
Shallow	\mathbf{PM}	0.04	0.148
	PM-D	0.03	0.111
	GAE	0.06	0.222
Undirected	HGCN	0.04	0.148
GNN	GAE-D	0.06	0.222
	HGCN-D	0.03	0.111
KCE	TransE	0.05	0.185
NGE	TransE-edge	0.02	0.074
Scattering	UDS-AE	0.04	0.148
Directed GNN	MagNet	0.08	0.296
Ours	DSGE-Euc	0.11	0.407
Ours	DSGE-Hyp	0.13	0.481

Himmelstein et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing" 2017.

Integrate gene-gene correlation in space with DSGE representation to discover gene-gene signaling

Spatial gene expression of human lymph node (GC: Germinal centers)

Inferred gene signaling network

Future work

- Explore opportunities to infer directed cell-cell relationships based on gene-gene network
- 2. Further understand Gromov hyperbolicity of gene-gene networks

Yale 🐬

Krishnaswamy Lab at Yale University

Looking for students & postdocs!

- Machine learning methods incorporating signal processing, data geometry and topology
- Exploratory analysis and inference for biomedical datasets (genomics, fMRI, patient data)

Acknowledgments

Krishnaswamy Lab

Smita Krishnaswamy Chen Liu Danqi Liao Dhananjay Bhaskar Edward De Brouwer Egbert Castro Kevin Givechian Dami Fasina Scott Youlten Xingzhi Sun Holly Steach

Funding

Gruber Fellowship

<u>Tape Lab</u>

Ferran Cardoso Rodriguez Christopher J. Tape

Perlmutter Lab

Michael Perlmutter Joyce A. Chew

GSP 2023

Thesis Committee

Smita Krishnaswamy Rex Ying Nikhil Joshi

Thank you!