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Genes "interact” by:
Ligands - Receptors - Transcription Factors—> Targets
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Gene representation is nontrivial

Gene signaling networks are hard
to represent from data alone

Pearson Correlation

ML,

« Metrics of coexpression are
noisy and do not capture real

interactions




Gene representation is nontrivial
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Chen, C,, Zhang, D., Hazbun, T.R. et al. Inferring Gene Regulatory Networks from a Population of Yeast Segregants. 2019




Magnetic Laplacian extends GSP to directed graphs
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Fanuel et al. “Magnetic Eigenmaps for the visualization of directed networks” 2017.

Furutani et al. “Graph Signal Processing for Directed Graphs based on Hermitian Laplacian” 2020.



Magnetic Laplacian extends GSP to directed graphs

1 . . .
1. A®) = S+ AT Symmetrized adjacency matrix
2 p& =N 4® Degree matrix of A
e Jk
K
3.0@D=2mqg (A—AT),q =0 Phase matrix captures direction

4. HD = A®) © exp(i 6@) Complex Hermitian adjacency matrix

5. 1P = [ — (D&)~/2H@ (p&))~1/2  Normalized magnetic Laplacian

LS\?) is positive semidefinite and admits an orthonormal basis of eigenvectors u; with eigenvalues A;

Furutani et al. “Graph Signal Processing for Directed Graphs based on Hermitian Laplacian” 2020.




Geometric scattering for representation learning
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Castro et al. “Uncovering the Folding Landscape of RNA Secondary Structure with Deep Graph Embeddings” 2020.




Directed Scattering for Gene Embeddings

A.  Construct or prune directed B. Directed scattering transform C. Encode scattering coefficients
biological network via spectral decomposition of in geometric spaces
the magnetic Laplacian
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Assembly of directed gene-gene graph

OmniPath database

Prior knowledge .
from Omanath ’ N — =
Intercellular Pathway activites 74. e
103,396 directed interactions l comuunicasion T —ese
| e.g. PROGENy,
12469 genes CARNIVAL, TieDIE e.g. DoRothEA

e.g. CellPhoneDB, NicheNet,
ICELLNET, CellChat, NATMI, cell2cell

Krackhardt hierarchy score = 0.757
Intercellular (signaling) vs Intracellular (gene regulation)

Turei et al. “Integrated intra- and intercellular signaling knowledge for multicellular omics analysis” 2021.




Directed Scattering Transform




Geometric Scattering for Graph Data Analysis

Feng Gao!? Guy Wolf*3 Matthew Hirn " !4

Diffusion wavelets:
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Coifman & Lafon “Diffusion maps” 2006.




Diffusion Wavelets: Difference between scales
of diffusion

Definition [Maggioni] A diffusion wavelet transform is a difference between two scales of
lazy diffusion on a graph

y, = p? — p27

Coifman and Maggioni “Diffusion wavelets” 2006.




Geometric scattering transform

Definition [Gao et al.] A geometric scattering transform S is an alternating cascade of wavelet coefficients and
non-linear aggregations of a signal defined on the nodes of a graph

Upm = ‘I’jm|‘Iij—l oo |‘Il]2|\I’]1:B|| ese | Sp,qm — Z |Upm[vi]|q
i=1

Zg) =2 >

Gao et al. “Geometric Scattering for Graph Data Analysis” 2018.




Generalized wavelets and scattering

Definition Given a laplace beltrami operator. —A, with eigenvalues 0 = A; < A; < A, ... and associated
Eigenfunctions =A@}, = A, @y, the heat semigroup H; is an operator that satisfies the heat equation.

H'f = Tys0 9(A)" f (k)@ where g(2) = e

Geometric Scattering on Measure Spaces

Joyce Chew Matthew Hirn Smita Krishnaswamy
Deanna Needell Michael Perlmutter Holly Steach
Siddharth Viswanath Hau-Tieng Wu
October 17, 2022 Definition [Chew et al. ] A generalized wavelet transform is a difference between two scales of a

heat semigroup

1_I_Jj — I_IZj_1 _ HZj_l

... scattering follows

Chew et al. “Geometric Scattering on Measure Spaces”. 2022



Directed wavelets from a Magnetic Laplacian

LS\?) has eigenvalues A, and eigenvectors u, forO0 <k <N —1

N-1 N-1
H, = Z etk H, = Z ettkukwr - Directed wavelets are based on the heat kernel which
k=0 k=0 is @ matrix exponential of the magnetic Laplacian

WO=I_H1

W =H,m—Hy1<j<]J Wavelets are differences between two scales of heat diffusion

W; = {W]} 0<j<JUH The wavelet library consists of dyadic wavelet scales




Learning low-dimensional encoding

S
v

Encoder (E)

$(6) = D(E(S(®)))

Decoder (D)
-

~
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DSGE-Euc: Euclidean encoder and decoder
DSGE-Hyp: Hyperbolic encoder and decoder




Hyperbolic geometry for tree-like graphs

(b) Embedding of a tree in B*

Nickel and Kiela “Poincaré Embeddings for Learning Hierarchical Representations” 2017.




Hyperbolic operations for deep learning

Mbobius addition. The Mébius addition of x and y in D! 1s defined as

(1 +2¢(z,y) + cllyl*)z + A = cllz]*)y

2l 6
1+ 2c(z,y) + |z ]ly ©)

TP,y :=

Mobius scalar multiplication. For ¢ > 0, the Mébius scalar multiplication of z € D' \ {0} by
r € R is defined as

r ®c T := (1/4/c) tanh(r tanh—l(\/EHa:H))ﬁ, (7)

Ganea et al. “Hyperbolic neural networks” 2018.




Link prediction
AUROC from
OmniPath graph

Method

Directed LP

node2vec 0.537

Shallow PM 0.525

PM-D 0.546

GAE 0.602

Undirected HGCN 0.573

GNN GAE-D 0.602

HGCN-D 0.599

. TransE 0.656

RGE TransE-edge 0.645

Scattering UDS-AE 0.581

Directed GNN  MagNet 0.714
Ours DSGE-Euc 0.718

DSGE-Hyp  0.716




Method Precision@100  Recall@100
— node2vec 0.18 0.225
Drug gene Shallow PM 0.06 0.075
o o PM-D 0.12 0.150
association prediction GAE 0:20 0230
Undirected HGCN 0.12 0.150
: : GNN GAE-D 0.20 0.250
for Vitamin K3 HGOND 016
TransE 0.12 0.150
R TransE-edge 0.11 0.138
Scattering UDS-AE 0.18 0.225
Edges from DrugBank, ChEMBL, Directed GNN  MagNet 0.14 0.175
. . DSGE-Euc  0.21 0.263
DrugCentral, and BindingDB Ours DSGE-Hyp  0.20 0.950

Himmelstein et al. “Systematic integration of biomedical knowledge prioritizes drugs for repurposing” 2017.




Method Precision@100  Recall@100
1 — node2vec 0.05 0.185
D I S e a S e ge n e Shallow PM 0.04 0.148
o L PM-D 0.03 0.111
association prediction | GAE 0.06 0222
Undirected HGCN 0.04 0.148
. . . GNN GAE-D 0.06 0.222
for Autistic Disorder HOON-D 003 0111
TransE 0.05 0.185
KGR TransE-edge  0.02 0.074
Scattering UDS-AE 0.04 0.148
Edges from GWAS. DISEASES Directed GNN  MagNet 0.08 0.296
_ ' ' B DSGE-Euc  0.11 0.407
DisGeNET, and DOAF s DSGE-Hyp  0.13 0.481

Himmelstein et al. “Systematic integration of biomedical knowledge prioritizes drugs for repurposing” 2017.




GC_network

Spatial gene
expression of
human lymph
node (GC:
Germinal
centers)

spatial2

Integrate gene-gene
correlation in space with
DSGE representation to
discover gene-gene
signaling

Inferred gene
signaling
network

10X Visium Spatial gene expression



GC_network

Future work

spatial2

1. Explore opportunities to infer %
directed cell-cell relationships spatiall
based on gene-gene network

2. Further understand Gromov
hyperbolicity of gene-gene
networks

Follicular
dendritic cells

T follicular
helper cells

Yale




Krishnaswamy Lab at Yale University

Looking for students & postdocs!

Yale

Machine learning methods
incorporating signal
processing, data geometry
and topology

Exploratory analysis and
inference for biomedical
datasets (genomics, fMRI,
patient data)
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