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  NINJA enables study of mechanisms
  of peripheral tolerance induction
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AAnet captures signatures of CD8 T cell peripheral tolerance in NINJA mice
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	 Advances in single-cell technologies, such as scRNA-seq, have enabled comprehensive profiling of immune states from a variety of tissues in health and disease. Such developments have highlight-
ed the broad range of differentiation programs driving complex immunological responses, as well as the continuous nature of differentiation in multiple cell types. This has resulted in the emergence of 
a paradigm that reimagines single cells as existing on a non-uniform continuum of cell states, where cells can be described by a combination of the “extreme states”. Such a framework requires a corre-
sponding computational paradigm that can capture transitional cell states along this continuum. Archetypal analysis is a factor analysis method that describes each observation in a dataset as a convex 
combination of “archetypes”, or pure types within the dataset. This enables the characterization of each cell by its relation to each of the archetypes.

	 Here, we present AANet, a deep neural network framework for identifying the archetypes in the dataset for archetypal analysis. AANet uses an autoencoder with a novel regularization on the latent 
layer such that the model learns the optimal transformation to represent the data in the bounds of a convex hull. This shows improvement over existing methods, which either incorrectly assume a lin-
ear relationship between features or apply fixed non-linear transformations to the data with no guarantee that they will approximate well to a simplex. We demonstrate the utility of AANet using a novel 
mouse model (iNversion INduced Joined neoAntigen, NINJA). NINJA mice bypass central tolerance mechanisms, enabling study of endogenous T cell responses in peripheral tissues. We define arche-
types of endogenous antigen-specific CD8 T cell response in the context of liver-specific tolerance. We show that AANet enables the investigation and comparison of modulation of endogenous T cell re-
sponse following antigen encounter.

NINJA x mice carrying Cre transgene expressed 
under Albumin promoter. After administration of 
D/T, hepatocytes express antigen GP33.

Condition A: Condition A: NINJA-albumin-Cre mice without D/T treatment.NINJA-albumin-Cre mice without D/T treatment.
Condition B: NINJA-albumin-Cre mice with D/T treatment.
Condition C: NINJA mice without Cre without D/T treatment.
Condition D: NINJA mice without Cre with D/T treatment.

NINJA-albumin-Cre model is 
specific to the liver

How do we study data in a way that captures a 
continuum of cell states?

How do we identify archetypes?

Archetypal analysis describes each obser-
vation as a combination of “archetypes”, or 
extreme states in the dataset. 

AAnet algorithm:

1. Autoencoder with k-dimensional latent space Z, where k equals the number of 
archetypes chosen by the user.
2. The archetypal space is regularized such that single activations of each dimen-
sion correspond to archetypes. All observations are bound by a k-dimensional sim-
plex.
3. AAnet learns the optimal transformation from feature space X to Z and inverse 
function from Z to X while preserving the underlying data geometry.

AAnet reformulates archetypal analysis with the goal of learning the ideal 
transformation of the data into an archetypal space bound by a simplex.

The latent space has semantic 
structure and can be used for data 
exploration and data generation.

ABSTRACT

AAnet provides an alternative to 
clustering for single-cell analysis


